学习笔记

机器学习笔记(1)基本概念

/*本课程笔记依托于Machine Learning——Andrew Ng(Stanford University)*/

当我打算开始学机器学习的时候我就感觉自己给自己开了一个超级大的坑

人生为什么辣么艰难

先记一下什么是机器学习

Two definitions of Machine Learning are offered. 

Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." 

This is an older, informal definition.

Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Example: playing checkers.

E = the experience of playing many games of checkers

T = the task of playing checkers.

P = the probability that the program will win the next game.

In general, any machine learning problem can be assigned to one of two broad classifications:

supervised learning and Unsupervised learning.

好吧这里我偷了个懒,直接从coursera上搬运过来了

机器学习分为Supervised learning(监督学习) 和 Unsupervised learning(无监督学习).

Supervised Learning

In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.

翻译一下(怎么可能)

利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程

简单的来说就是给定一组训练集,给定这组训练集对应的结果,假定为是否是猫,通过训练集以及训练结果来达到识别一个物体是否是猫的工作,再通俗一点监督学习就是提前告诉你这个样本是啥,那个样本是啥,然后给一个新东西判断这个属于啥

监督学习的目标是建立一个输入到输出的映射关系(《机器学习导论》机械工业出版社原书第三版)

 

coursera给出了两个监督学习的example,照搬过来

Example 1:

Given data about the size of houses on the real estate market, try to predict their price. Price as a function of size is a continuous output, so this is a regression problem.

We could turn this example into a classification problem by instead making our output about whether the house "sells for more or less than the asking price." Here we are classifying the houses based on price into two discrete categories.

Example 2:

(a) Regression - Given a picture of a person, we have to predict their age on the basis of the given picture

(b) Classification - Given a patient with a tumor, we have to predict whether the tumor is malignant or benign.

 

Unsupervised learning

Unsupervised learning allows us to approach problems with little or no idea what our results should look like. 
We can derive structure from data where we don't necessarily know the effect of the variables.

简单来说,无监督学习就是

给定一堆事物,让计算机自动以某个标准进行分类,不告诉计算机某个样本是什么样子,而是让其自己对样本进行分类

(卧槽,感觉好不专业,算了大概就是那么个意思)

coursera也给出了example,照搬过来

Example:

Clustering: Take a collection of 1,000,000 different genes, and find a way to automatically group these genes into groups that are somehow similar or related by different variables, such as lifespan, location, roles, and so on.

Non-clustering: The "Cocktail Party Algorithm", allows you to find structure in a chaotic environment. (i.e. identifying individual voices and music from a mesh of sounds at a cocktail party).

大概这就是一些基本概念吧,简单的记录一下什么是机器学习,以及什么是监督学习和无监督学习

发表评论

您的电子邮箱地址不会被公开。